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Abstract In this paper, we study a general optimization problem without linear structure
under a reflexive and transitive relation on a nonempty set E, and characterize the existence
of efficient points and the domination property for a subset of E through a generalization
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criteria.
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1 Introduction

Existence results of efficient points of a set are of great interest in optimization theory. Many
authors have obtained sufficient conditions for the existence of efficient points in the frame-
work of topological vector spaces ordered by a convex cone, such as Yu [23], Wagner [21],
Hartley [9], Corley [3], Luc [16], [17], Ferro [5], [6], Jahn [12], Zhu et al. [22] and references
therein. Hartley established cone-compactness as a sufficient condition for the existence of
efficient points. Corley studied cone-semicompactness and used it to give existence results.
Luc introduced the notion of cone-completeness in order to characterize the existence of
efficient points of a set and to extend several existence results of vector optimization. Ferro
in his nice work [5] besides revising some of the results in [4] and [16], provided various
existence theorems improving and generalizing previous results when the partial order comes
from a convex, closed and pointed cone.

One may ask whether these notions (cone-semicompactness and cone-completeness) and
existence results are still true if the linear structure does not exist. Furthermore, is it possible
to consider these concepts in a set equipped with a reflexive and transitive relation?.

About this question, in [19] the authors discussed the existence of efficient points of a set
with respect to general transitive relations and in [18], without linear structure, an existence
result of efficient points is given.

The aim of this paper is to show that some known existence results of efficient points in
vector optimization do not rely on the linearity of the space.

An important application of the topic of this paper regards certain set-valued optimization
problems as we now briefly describe.

Let X be a nonempty set and Y be a vector space equipped with a partial order ≤. Asso-
ciated to a given set-valued map F : X → ℘0(Y ), where ℘0(Y )

.= 2Y \ {∅}, the vector
optimization problem with set-valued maps is usually defined as follows

(V P ) Min F(x) subject to x ∈ X,

which means to find x0 ∈ X with the property that there exists y0 ∈ F(x0) such that

y0 ∈ Min(F (X),≤)

where F(X) = ⋃
x∈X F(x). This notion says, roughly speaking, that x0 is a solution to (VP)

if F(x0) contains an efficient element of F(X) with respect to the ordering ≤ defined on Y .
This type of criterion of solution is called vector criterion. However, sometimes it is more
desirable the existence of some x0 such that the whole set F(x0) is an efficient element of
the family of subsets {F(x) : x ∈ X} with respect to a preference � given by a reflexive
and transitive relation defined on ℘0(Y ). This criterion of solution called set criterion was
introduced by Kuroiwa in 1998. So, in this framework, the efficient notions are defined by
means a partial order involving sets instead of points. Therefore, there is no linear structure
due to the partial order � is defined on ℘0(Y ). Several concepts taking into account the pre-
vious observation have been first introduced by Kuroiwa in [13]. Recently, more and more
authors investigate set-valued optimization problems where the solutions are obtained by
means of set relations (see, for example, [8], [14], [15], [1], [7], [10] and [11]). Moreover,
we emphasize that set relations are widely used in theoretical computer science as well as in
fixed point theory (see [2]).

The main goal of the present paper is to provide a general framework which encompasses
the one employed in all the preceding papers. In particular, an abstract existence theorem
under minimal assumptions is established. To that end, we consider any nonempty set E with
a partial order, denoted by �, which is reflexive and transitive.
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An interesting example of nonvector optimization is answer set programming which has
proven to be extremely useful for solving several artificial intelligence problems, see for
example [20] and the references given there.

The outline of the present paper is as follows. Section 2 states several basic definitions and
establishes various of their consequences which will be applied in the subsequent sections.
In Sect. 3, we provide first, several characterizations for the existence of efficient points of
any given set without linear structure under a reflexive and transitive relation, as well as some
characterizations when the set is equipped with a topology. As applications, when the partial
order comes from a convex cone K (so a linear structure is needed) we extend Theorem 3.4,
Chapter 2 in [16] which provides a characterization under strongly K-completeness. On the
other hand, when the partial order is not necessarily induced by a convex cone, we prove that
the condition of Theorem 2.1 in [18] in terms of order s-semicompactness is also necessary.
The domination property is characterized in Sect. 4 in terms of the notions introduced in
Sect. 2. In Sect. 5 we establish conditions for the existence of solutions of a general opti-
mization problem under continuity assumptions. Finally, as an application of the previous
sections we study solutions of a set-valued optimization problem by using both criteria of
solutions and improve some of the results obtained in [1], [14], [15] and [11]. The set criterion
case is discussed in Sect. 6 and the vector criterion case in Sect. 7.

2 Preliminaries and basic definitions

In the sequel E denotes a nonempty set with a partial order � and A denotes a nonempty
subset of E. We denote by Ac the complementary set of A. If E is a topological space we
denote by cl A the closure of A.

A point ā ∈ A is called an efficient point of A if

a ∈ A , a � ā �⇒ ā � a.

The set of all efficient points of A is denoted by Min(A, �). If x, y ∈ E we denote by
x ∼ y if and only if x � y and y � x. We follow the notations used in [16]. For x ∈ E, the
lower and upper section at x are defined by

Lx
.= {y ∈ E : y � x}, Sx

.= {y ∈ E : x � y},
and

SA
.=

⋃

x∈A

Sx.

Thus, we can write

Min(A, �) = {ā ∈ A : A ∩ Lā ⊆ Sā}.
On the other hand, it is not difficult to check that SLc

x
= Lc

x (see [18]), where Lc
x

.= (Lx)
c.

In case E is a vector space and the partial order is induced by a convex cone K , denoted by
�K , simple computations show that

Lx = x − K, Sx = x + K, SA = A + K.

For A,B ⊆ E, we say that A is minorized by B if, for each a ∈ A there exists b ∈ B such
that b � a, that is, if A ⊆ SB . By a lower section of A we mean a set of the form

Ax
.= Lx ∩ A, for some x ∈ E.
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The following proposition generalizes Lemmas 4.7 and 6.2(a) of [12] which are formu-
lated in terms of vector optimization.

Proposition 2.1

(a) Min(A, �) ⊆ Min(SA, �). Furthermore, if La ∩ Sa = {a} for all a ∈ A then
Min(SA, �) = Min(A, �).

(b) Let x ∈ E. Then Min(Ax, �) ⊆ Min(A, �).

We recall that a subset A of E is a totally ordered set or a chain in E if for all x, y ∈ A

either x � y or y � x is true.
The following two concepts are new and will play a fundamental role in our existence

theory to be developed in the subsequent sections.

Definition 2.2

(a) We say that A is order-totally-complete if there are no covers of A of the form {Lc
x : x ∈

D}, D ⊆ A, with D totally ordered.
(b) Let E be a topological space. We say that A is τ -order-totally-complete if there are no

covers of A of the form {(cl Lx)
c : x ∈ D}, D ⊆ A, with D totally ordered.

The order-total-completeness admits some equivalent formulations. One of them is related
to property (Z) introduced in [18]: a set A has such a property if every totally ordered subset
of A has a lower bound in A. The proof of the next proposition follow from Definition 2.2(a).

Proposition 2.3 The following statements are equivalent:

(a) A is order-totally-complete;
(b) A has property (Z);
(c) every maximal totally ordered subset of A has a lower bound in A.

Part (a) of the next definition was used in [18] to establish an interesting existence theorem,
which will be obtained as a consequence of Theorem 3.4, whereas Part (b) is new.

Definition 2.4

(a) [18] We say that A is order-semicompact (respectively order-s-semicompact) if every
cover of A of the form {Lc

x : x ∈ D}, D ⊆ A(respectively D ⊆ E), has a finite subcover.
(b) Let E be a topological space. We say that A is τ -order-semicompact (respectively τ -

order-s-semicompact) if every cover of A of the form {(cl Lx)
c : x ∈ D}, D ⊆ A(respec-

tively D ⊆ E), has a finite subcover.

Clearly, if A is order-s-semicompact then A is order-semicompact, and τ -order-s-semi-
compactness implies τ -order-semicompactness.

We recall that a directed set (I,>) is a nonempty set I together with a reflexive and
transitive relation > such that for any two elements α, β ∈ I there exists γ ∈ I with γ > α

and γ > β. A net in E is a map from a directed set (I,>) to E. A net {yα : α ∈ I } is said
to be decreasing if yβ � yα for each α, β ∈ I , β > α.

When E is a topological vector space and the ordering is given by a convex cone K the
notion of τ -order-semicompactness coincides with K-semicompactness introduced in Defi-
nition 2.5 of [3], which has its origin in [21]. In addition, the notion in Part (a) (respectively
Part (b)) of the next definition corresponds to the notion of strongly K-completeness (respec-
tively K-completeness) introduced by Luc in Chapter 2 of [16], see also [17]. Recall that a
convex cone K is pointed if K ∩ (−K) = {0}.
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Definition 2.5

(a) We say that A is order-complete if there are no covers of the form {Lc
xα

: α ∈ I } where
{xα : α ∈ I } is a decreasing net in A.

(b) Let E be a topological space. We say that A is τ -order-complete if there are no covers
of the form {(cl Lxα )c : α ∈ I } where {xα : α ∈ I } is a decreasing net in A.

The next theorem is easy to check and shows the generality of our notions introduced in
Definitions 2.2, 2.4 and 2.5.

Theorem 2.6

(a) If A is order-semicompact then A is order-complete.
(b) If A is order-complete then A is order-totally-complete.
(c) Let E be a topological space.

If A is τ -order-semicompact then A is τ -order-complete.
If A is τ -order-complete then A is τ -order-totally-complete.
If A is order-complete then A is τ -order-complete.
If A is order-totally-complete then A is τ -order-totally-complete.

Consequently, we have the following relationships:

order-s-semicompact τ -order-s-semicompact
⇓ ⇓

order-semicompact τ -order-semicompact
⇓ ⇓

order-complete ⇒ τ -order-complete
⇓ ⇓

order-totally-complete ⇒ τ -order-totally-complete

It is easy to prove the following proposition.

Proposition 2.7

(a) If A is order-s-semicompact then Ax is order-s-semicompact for each x ∈ A.
(b) If A is order-semicompact then Ax is order-semicompact for each x ∈ A.
(c) If A is order-complete then Ax is order-complete for each x ∈ A;
(d) If A is order-totally-complete then Ax is order-totally-complete for each x ∈ A.

Proposition 2.8 Assume that a ∈ Min(A, �). Then,

(a) Aa = {x ∈ A : x � a, a � x};
(b) Aa is order-semicompact.

Proof Part (a) is straightforward. We only prove Part (b). Suppose that

Aa ⊆
⋃

x∈D

Lc
x

for D ⊆ Aa . By (a), it is easy to check that Lx = La for all x ∈ D. Thus, Aa ⊆ Lc
a , which

is a contradiction. Hence Aa is order-semicompact. ��
Note that if a ∈ Min(A, �) then Aa is also order-complete or, equivalently, order-totally-

complete according to Theorem 2.6.
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3 Characterizing the efficiency

In this section, we extend, generalize and in some situations improve some of the more
important existence results appearing in the literature. Among them, we mention the results
of [16] and [17] obtained in the vectorial case, and also the main result of [18] obtained with-
out linear structure. Our first existence result is without linear and topological structures.
Afterwards, we establish several characterizations of the nonemptiness of Min(A, �) in the
same framework. The case when a topology is added, is also discussed in detail.

When no confusion arises, we use the notation Min A instead of Min(A, �).
Next result can be obtained as a consequence of Proposition 2.1(ii) in [19]. However we

propose an alternative proof based on our own preliminaries.

Theorem 3.1 If A is an order-totally-complete set then Min A = ∅.

Proof Let P be the set of totally ordered sets in A. Since A = ∅, P = ∅. Moreover, P
equipped with the partial order given by the inclusion, becomes a partially ordered set. By
standard arguments we can prove that any chain in P has an upper bound and, by Zorn’s
lemma, we get a maximal set D ∈ P .

Applying Proposition 2.3, there exists a lower bounda ∈ AofD. We claim thata ∈ Min A.
Indeed, if a′ ∈ A satisfies that a′ � a then a′ is also a lower bounded of D. Thus, a′ ∈ D by
the maximality of D in P . Hence, a � a′ and therefore a ∈ Min A. ��

In particular, by Theorem 2.6, we deduce that if A ⊆ E is order-s-semicompact, order-
semicompact or order-complete then Min A = ∅.

By considering E to be a topological space and A to be a τ -order-complete or a τ -order-
totally-complete set, we can obtain a sufficient condition for the existence of efficient points
under an additional assumption on the partial order. Such an assumption is a topological
version of the notion of correcteness introduced in [16], see also [17].

Theorem 3.2 Let E be a topological space. Suppose that the following condition holds

y ∈ cl Lx, z ∈ Ly ∩ Sc
y �⇒ z ∈ Lx. (1)

If A is a τ -order-totally-complete set then Min A = ∅.

Proof Let P be the set of totally ordered sets in A. Obviously P = ∅. We consider the partial
order given by the inclusion on P . By standard arguments we can prove that any chain in P
has an upper bound and, by the Zorn lemma, we get a maximal element in P , say D ∈ P .

Suppose that Min A = ∅. We will prove that {(cl Ld)c : d ∈ D} is a cover of A, giving a
contradiction. Indeed, if y ∈ A and y ∈ ⋃{(cl Ld)c : d ∈ D} then

y ∈ cl Ld ∀ d ∈ D. (2)

Since Min A = ∅, then there exists y′ ∈ A such that y′ � y and y � y′, which means
y′ ∈ Ly ∩ Sc

y . From this and (2), by (1) we deduce that y′ � d ∀ d ∈ D. The maximality
of D implies that y′ ∈ D. Thus, D is maximal and bounded below by y′. Hence y′ ∈ Min A

which is a contradiction. ��
Note that if Ly is closed for all y ∈ E then condition (1) trivially holds. In particular, if

the ordering comes from a convex closed cone K , the following result is a consequence of
the preceding theorem. See also [19,Theorem 5.1].
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Corollary 3.3 [3,Theorem 3.1] Suppose that E is a topological vector space ordered by a
convex cone K . If A is a τ -order-semicompact set with respect to �K , then Min(A, �cl K)

is nonempty. If, in addition, cl K is pointed then Min(A, �K) is nonempty.

Proof Since A is also τ -order-semicompact with respect to �cl K , Theorem 3.2 implies that
Min(A, �cl K) is nonempty. The remaining conclusion follows from the inclusion

Min(A, �cl K) ⊆ Min(A, �K)

which is a consequence of the pointedness of cl K . ��
Theorem 3.4 The following assertions are equivalent:

(a) Min A = ∅;
(b) A has a maximal totally ordered subset minorized by an order-s-semicompact subset H

of SA;
(c) A has a nonempty section which is order-complete;
(d) A has a nonempty section which is order-totally-complete.

Proof (a) �⇒ (b): Take any a ∈ Min A, and consider

P .= {D ⊆ E : La ∩ A ⊆ D ⊆ Sa ∩ A and D is totally ordered }.
Taking into account Proposition 2.8 and La ∩A is totally ordered, La ∩A ∈ P . By equipping
P with the partial order given by the inclusion, we can prove by standard arguments that any
chain in P has an upper bound. Therefore, there exists a maximal totally ordered element
D0 ∈ P , that is,

La ∩ A ⊆ D0 ⊆ Sa ∩ A ⊆ Sa.

Set H = {a}. Then D0 is minorized by H which is obviously an order-s-semicompact subset
of SA.
(b) �⇒ (c): Applying Theorem 2.1 in [18] we have that Min A = ∅. Take any a ∈ Min A.
Then by Proposition 2.8(b), the section Aa is order-complete.
(c) �⇒ (d): It is straightforward.
(d) �⇒ (a): It is a consequence of Theorem 3.1 and Proposition 2.1(b). ��

We point out that the previous theorem generalizes [18,Theorem 2.1] and Theorem 3.4 of
[16,Chapter 2] (see also Remark 2.14 in [17]). In fact: in [18] is only proven that (b) implies
(a); when E is a vector space ordered by a convex cone, the equivalence between (a) and
(c) is Theorem 3.4 in [16,Chapter 2] due to Theorem 2.6.

If order-s-semicompactness for the subset H of SA in Part (b) is replaced by order-semi-
compactness, then the above theorem may be not true as the following example shows.

Example 3.5 Consider E = R
2 ordered by K = R

2+ and A = {(x + 1
n
,−x + 1

n
) : n ∈

N, x ∈ [0,+∞[}. Set H = {t ( 1
2 ,− 1

4 ) : 0 < t ≤ 1}. It is easy to check that H ⊆ SA and
{( 1

n
, 1

n
) : n ∈ N} is a maximal totally ordered subset of A minorized by H . In addition, H is

order-semicompact but is not order-s-semicompact. However, Min A = ∅.

By virtue of the previous example, it is possible to impose a condition weaker than the
order-s-semicompactness for the subset H of SA, but we have to require an additional property
on H . More precisely, we obtain the following theorem.
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Theorem 3.6 The set Min A is not empty if and only if A has a maximal totally ordered
subset D minorized by an order-totally-complete subset H of SA such that for each d ∈ D

there exists v ∈ H such that v ∼ d.

Proof Let us see that D has a lower bound in A. Then, as a consequence Min A = ∅. On the
contrary, suppose that for each a ∈ A there is d ∈ D such that a ∈ Lc

d . Then we have

A ⊆
⋃

d∈D

Lc
d .

Thus, SA ⊆ ⋃
d∈D Lc

d and

H ⊆
⋃

d∈D

Lc
d . (3)

By hypothesis, for each d ∈ D there is v ∈ H with v ∼ d , taking into account (3) and
Ld = Lv we can find a totally ordered subset H ′ of H such that

H ⊆
⋃

v∈H ′
Lc

v

which contradicts that H is order-totally-complete.
Suppose that a ∈ Min A. Consider

P .= {P ⊆ E : La ∩ A ⊆ P ⊆ A and P is totally ordered}.
It is clear that, La ∩A ∈ P (see Proposition 2.8). By equipping P with the partial order given
by the inclusion, we can prove by standard arguments that there exists a maximal totally
ordered element P0 ∈ P. Moreover, by Proposition 2.3, P0 is order-totally-complete. Hence,
if D = H = P0 we conclude the proof. ��

In the context of topological spaces we obtain the following characterization of efficiency
which is new in this general setting and generalizes Theorem 3.3 in [16,Chapter 2] (see also
[17,Theorem 2.6]).

Theorem 3.7 Suppose that E is a topological space and condition (1) holds. Then, the
following assertions are equivalent:

(a) Min A = ∅;
(b) A has a nonempty section which is τ -order-complete;
(c) A has a nonempty section which is τ -order-totally-complete.

Proof (a) �⇒ (b): Take a ∈ Min A and consider the section Aa . Then the result follows
from Proposition 2.8.
(b) �⇒ (c): It is immediate.
(c) �⇒ (a): It follows from Theorem 3.2 and Proposition 2.1(b). ��

4 Characterizing the domination property

In some situations arising in the theory of decision making, we are interested in the subset
of efficient points for which no other admissible (alternative) point is preferred. We say that
an admissible set has the domination property is each admissible point is either efficient,
or else there exists a preferred admissible point which is also efficient. It is mathematically
expressed in the following definition.
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Definition 4.1 A set A has the domination property if

for each a ∈ A there exists a0 ∈ Min A such that a0 ∈ La ∩ A,

or equivalently,

A ⊆ SMin A.

As a consequence, A has the domination property if and only if

Min(La ∩ A) = ∅ ∀ a ∈ A.

Due to Proposition 2.7 and Theorems 2.6 and 3.1 we have that if A is order-s-semicom-
pact, order-semicompact, order-complete or order-totally-complete then A has the domina-
tion property.

The following characterization holds.

Theorem 4.2 The following statements are equivalent:

(a) A has the domination property;
(b) for each a ∈ A, there exists a0 ∈ La ∩A such that La0 ∩A has a maximal totally ordered

subset minorized by an order-s-semicompact subset of SLa0 ∩A;
(c) for each a ∈ A there exists a0 ∈ La ∩ A such that La0 ∩ A is order-complete;
(d) for each a ∈ A there exists a0 ∈ La ∩ A such that La0 ∩ A is order-totally-complete.

Proof (a) �⇒ (b): Let a ∈ A. By assumption, we can take a0 ∈ Min(La ∩ A). Set

D
.= (La ∩ A) ∩ La0 = La0 ∩ A = {x ∈ A : x � a0, a0 � x}.

Obviously D is totally ordered, is maximal in La0 ∩ A, and it is minorized by H
.= {a0},

which is order-s-semicompact.
(b) �⇒ (c): By Theorem 2.1 [18], there exists a′ ∈ Min(La0 ∩ A). Thus, by Proposition
2.8(b), Aa′ = La′ ∩ A is order-complete.
(c) �⇒ (d). It is immediate.
(d) �⇒ (a). It is follows from Theorem 3.1 and Proposition 2.1(b). ��

Similarly, taking into account Proposition 2.8 and Theorem 3.2 we have the following
characterization.

Theorem 4.3 Suppose that E is a topological space and the condition (1) holds. The fol-
lowing statements are equivalent:

(a) A has the domination property;
(b) for each a ∈ A there exists a0 ∈ La ∩ A such that La0 ∩ A is τ -order-complete;
(c) for each a ∈ A there exists a0 ∈ La ∩ A such that La0 ∩ A is τ -order-totally-complete.

5 Optimization problems

In the sequel, X is a Hausdorff topological space and E is a nonempty set equipped with a
partial order � and f is a map from X into E.

Consider the following abstract optimization problem

(P ) Min f (x) subject to x ∈ X,
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We set f (X)
.= {f (x) : x ∈ X}. By a solution to (P ), we mean a point x̄ ∈ X such that

f (x̄) ∈ Min(f (X), �). Thus, our main goal in this section is stating some conditions guaran-
teeing Min f (X)

.= Min(f (X), �) = ∅. Actually, our conditions will imply the domination
property. These results will be specialized to vector optimization problems, that is, when the
ordering is induced by a convex cone.

Theorem 5.1 Let X be compact. If f −1(Ly) is closed for each y ∈ f (X)(resp. for each
y ∈ E), then

(a) f (X) is order-semicompact (resp. f (X) is order-s-semicompact);
(b) f (X) has the domination property, that is, every lower section of F(X) has an efficient

point. In particular, Min f (X) = ∅.

Proof We only prove Part (a) when f −1(Ly) is closed for each y ∈ f (X). Part (b) follows
from Proposition 2.7(b), Theorems 2.6(a)-(b) and 3.1. Suppose that

⋃
d∈D Lc

d is a cover of
f (X) with D ⊆ f (X). Set

Ud
.= {x ∈ X : f (x) ∈ Ld}.

Thus, X = ⋃
d∈D Ud. Since f −1(Ld) is closed and Ud = (f −1(Ld))c, then Ud is open for

each d ∈ D. Moreover, as X is compact there exists a finite set {d1, . . . , dr } ⊆ D such that

X = Ud1 ∪ · · · ∪ Udr .

Hence, Lc
d1

∪ · · · ∪ Lc
dr

covers f (X) and f (X) is order-semicompact. ��

The previous theorem admits a variant when the closedness of f −1(cl Ly) for all y ∈ E

is required. In this case, we need an additional assumption on the partial order. Notice that
in this case the domination property is not obtained.

Theorem 5.2 Suppose that E is a topological space and the condition (1) holds. Let X be
compact. If f −1(cl Ly) is closed for each y ∈ f (X) (resp. for each y ∈ E), then

(a) f (X) is τ -order-semicompact (resp. f (X) is τ -order-s-semicompact),
(b) Min f (X) = ∅.

Proof We can apply the same arguments as in Theorem 5.1 by considering

Ud = {x ∈ X : f (x) ∈ cl Ld}
and taking into account Theorem 3.2. ��

When E is a topological vector space and �=�K for some convex cone K , a function
f : X → E is said to be K-semicontinuous ([3]) if f −1(cl(Ly)) is closed for all y ∈ E, i.e.,
if f −1(y − cl(K)) is closed for all y ∈ E. We recall that K-semicompactness [3] coincides
with the the notion of τ -order-semicompactness with respect to �K , as already mentioned
before Definition 2.4.

Corollary 5.3 Suppose that E is a topological vector space ordered by a convex cone K .
Let X be compact. If f is K-semicontinuous and K is closed, then

(a) f (X) is order-s-semicompact. In particular, f (X) is K-semicompact.
(b) f (X) has the domination property,
(c) Min f (X) = ∅.
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Corollary 5.4 [3,Corollary 3.1] Suppose that E is a topological vector space ordered by
a convex cone K . Let X be compact. If f is K-semicontinuous and cl K is pointed, then
Min f (X) = ∅.

Proof It is a consequence of Corollaries 5.3 and 3.5 by noticing that K-semicontinuity is
equivalent to cl(K)-semicontinuity. ��

We now introduce the following relaxed continuity for single valued maps.

Definition 5.5 Let x0 ∈ X. We say that f is (resp. τ -)decreasingly lower bounded at x0

if for each net {xα : α ∈ I } converging to x0 such that {f (xα) : α ∈ I } is decreasing, the
following holds

∃ α0 ∈ I ∀ α > α0 : f (x0) ∈ Lf (xα) (resp. f (x0) ∈ cl Lf (xα)),

or equivalently (because (f (xα))α∈I is decreasing and I is a direct set),

∀ α ∈ I : f (x0) ∈ Lf (xα) (resp. f (x0) ∈ cl Lf (xα)).

We say that f is (resp. τ -)decreasingly lower bounded (on X) if it is at every x0 ∈ X.

Proposition 5.6 If f −1(Ly) is closed (resp. f −1(cl Ly)) for each y ∈ f (X), then f is
(resp. τ -) decreasingly lower bounded.

Proof Suppose that {xα : α ∈ I } is a net in X, converging to x0 ∈ X and {f (xα) : α ∈ I } is
decreasing. Let us prove that f (x0) ∈ Lf (xα) for all α ∈ I . If there exists α′ ∈ I such that
f (x0) � f (xα′), then f (x0) � f (xα) for each α ∈ I with α > α′ since {f (xα) : α ∈ I } is
decreasing. Thus, {xα : α ∈ I, α > α′} ⊆ f −1(Lf (xα′ )). Therefore, since f −1(Lf (xα′ )) is
closed we have x0 ∈ f −1(Lf (xα′ )). Hence, f (x0) � f (xα′) which is a contradiction.
We can reason in a similar way to check that f is τ -decreasingly lower bounded when
f −1(cl Ly) is closed for each y ∈ f (X). ��
Remark 5.7 As a consequence of Proposition 5.6, if E is a topological vector space ordered
by a closed convex cone K and f is K-semicontinuous then f is decreasingly lower bounded.

Theorem 5.8 Let X be compact. If f is decreasingly lower bounded, then

(a) f (X) is order-complete,
(b) f (X) has the domination property,
(c) Min f (X) = ∅.

Proof Suppose that
⋃

α∈I Lc
yα

is a cover of f (X) with {yα : α ∈ I } a decreasing net in f (X).
Let xα be such that f (xα) = yα for each α ∈ I . Since X is compact there exists a subnet
{xα′ : α ∈ I ′} of {xα : α ∈ I } such that converges to some x0 ∈ X. Therefore exists α′

0 ∈ I ′
such that

f (x0) ∈ Lf (xα) ∀ α′ ∈ I, α′ > α′
0. (4)

On the other hand, f (x0) ∈ Lc
yα0

for some α0 ∈ I. Let γ ∈ I ′ such that γ > α0 and γ > α′
0.

Since {yα : α ∈ I } is decreasing we have Lc
yα0

⊆ Lc
yγ

. Thus,

f (x0) ∈ Lc
γ

which contradicts (4). Consequently, f (X) is order-complete and the proof is concluded. ��
We note that similar arguments prove that if f is τ -decreasingly lower bounded then

f (X) is τ -order-complete. In addition, if condition (1) is imposed, then Min f (X) = ∅ by
Theorem 3.2.
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6 Application to set-valued optimization: the set criterion case

This section is devoted to set-valued optimization. As an application to our results we extend
and improve several existence theorems given in [14,15] and [1] and present new ones as
well.

Throughout this section Y will be a topological vector space ordered by a convex closed
cone K ⊆ Y and consider the following set relations �l and �u defined between nonempty
subsets of Y . If A,B ∈ ℘0(Y ) then

A �l B if and only if B ⊆ A + K.

A �u B if and only if A ⊆ B − K.

Such relations �l and �u are reflexive and transitive on ℘0(Y ). Moreover, since A �l

B ⇔ B + K ⊆ A + K, it is clear that �l can not be antisimetric, unless K = {0}.
Note that A �u B ⇔ (−A) ⊆ (−B) + K ⇔ (−B) �l (−A) therefore, there is no need

to consider both relations.
Kuroiwa in [13] introduced the notion of efficient set for a familyF ⊆ ℘0(Y ) as follows. It

is said that A ∈ F is an l-minimal (u-minimal) set, and we write A ∈ l-Min F (A ∈ u-Min F)
if B ∈ F and B �l A (B �u A) imply that A �l B (A �u B).

In this manner, (℘0(Y ), �l ) and (℘0(Y ), �u) are particular cases of (E, �) studied in
the preceding sections. So, taking into account the notations and definitions introduced in
Sect. 2, we obtain the corresponding concepts for families of sets as follows.

Let B ∈ ℘0(Y ), associated to the ordering �l , the lower section at B, is

L(B,�l ) = {A ∈ ℘0(Y ) : A �l B} = {A ∈ ℘0(Y ) : B ⊆ A + K}
and its complement

Lc
(B,�l )

.= (L(B,�l ))
c = {A ∈ ℘0(Y ) : A �l B}

= {A ∈ ℘0(Y ) : B � A + K}
= {A ∈ ℘0(Y ) : ∃ b ∈ B, A ⊆ (b − K)c}.

Since we want to compare with most of the results appearing in the literature, the set-rela-
tion �u is also considered explicitely just for convenience of the reader. We have

L(B,�u) = {A ∈ ℘0(Y ) : A �u B} = {A ∈ ℘0(Y ) : A ⊆ B − K}
and

Lc
(B,�u)

.= (L(B,�u))
c = {A ∈ ℘0(Y ) : A �u B}

= {A ∈ ℘0(Y ) : A ∩ (B − K)c = ∅}
= {A ∈ ℘0(Y ) : ∃ a ∈ A, B ⊆ (a + K)c}

Then, by Definitions 2.2, 2.4 and 2.5(a) we obtain the notion of family order-s-semicom-
pact, order-semicompact, order-complete and order-totally-complete with respect to �l or
�u. More precisely, given F ⊆ ℘0(Y ) and setting H

.= ⋃
A∈F A, we obtain that {Lc

(B,�l )
:

B ∈ F ′} is a cover of F for some F ′ ⊆ F if, and only if, there exists H ′ ⊆ H such that the
family of sets {(y − K)c : y ∈ H ′} satisfies the following:

∀ A ∈ F, ∃ y ∈ H ′, A ⊆ (y − K)c. (5)
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The family {(y−K)c : y ∈ H ′} satisfying the previous property is termed in [1,Definition 27]
a KF -cover. In the same paper, it is said that F is K-semicompact if each KF -cover admits
a finite KF -subcover. One can easily prove that K-semicompactness implies order-semi-
compactness with respect to �l but the converse may be not true as the following example
shows.

Example 6.1 Consider R
2 ordered by K = R

2+ and the family F = {Ax : x ∈ ]0,+∞[}
defined by Ax = [(−x, 0), (−x,− 1

x
)] ∪ {( 1

x
,− 1

x
)}, x ∈ ]0,+∞[. It is easy to check

that F is order-semicompact with respect to �l . However F is not K-semicompact since
{(ax −K)c : x ∈ ]0,+∞[} with ax = ( 1

x
,− 1

x
) is a KF -cover but it does not admit any finite

KF -subcover.

As a consequence, ifF is K-semicompact then we obtain Proposition 30 in [1] by Theorem
3.1. Moreover, we also proved that F has the domination property.

Concerning the relation �u, given F ′ ⊆ F , we obtain that {Lc
(B,�u) : B ∈ F ′} covers F

if, and only if, the family {(B − K)c : B ∈ F ′} satisfies the property:

∀ A ∈ F, ∃ B ∈ F ′, A ∩ (B − K)c = ∅.

Such a family is termed in [1,Definition 19] a K-family of intersection of F . In the same
paper, it is said that F is K-regular if each K-family of intersection of F admits a finite
K-family of intersection. In this case, K-regularity amounts to saying order-semicompact-
ness with respect to �u. Thus, the existence result of Proposition 22 in [1] is a consequence
of our general Theorem 3.1. Also the domination property is satisfied.

Note that Theorem 3.2 in [15] is a consequence of Theorem 3.4.
On the other hand, since the order-completeness with respect to �l coincides with the

strongly K-completeness defined in [11,Definition 3.9], Theorem 3.1 generalizes
[11,Theorem 4.1].

We now consider the following set-valued optimization problem

(SP ) Min F(x) subject to x ∈ X,

where X is a Hausdorff topological space and F : X → ℘0(Y ) is a set-valued map. Let us
consider F .= {F(x) : x ∈ X}. We say that x0 ∈ X is an l-solution of (SP ) if F(x0) ∈
Min(F, �l ).

Definition 6.2 [16,Chapter 1] We say that F is upper K-semicontinuous at x0 ∈ X if for
each open neighborhood V of F(x0) there is an open neighborhood U of x0 in X such that

F(x) ⊆ V + K ∀ x ∈ U.

We say that F is upper K-semicontinuous on X if it is at every x ∈ X.

Proposition 6.3 Assume that F is upper K-semicontinuous on X. Then

(a) F−1(L(F(x),�l ))
.= {x′ ∈ X : F(x′) �l F (x)} is closed for any x ∈ X;

(b) if, in addition, X is compact, every KF -cover of the form

{(y − K)c : y ∈ H ′}, H ′ ⊆
⋃

x∈X

F(x)

(in the sense of (5)) admits a finite KF -subcover.
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Proof
(a): Fix x ∈ X and take x ∈ X such that F(x) �l F (x). This means that there exists
y ∈ F(x) with y /∈ F(x) + K, that is, F(x) ⊆ (y − K)c. Since K is closed and F is upper
K-semicontinuous, there exists U neighborhood of x such that F(x′) ⊆ (y − K)c + K =
(y −K)c for every x′ ∈ U. Hence y /∈ F(x′)+K, whence F(x′) �l F (x), for every x′ ∈ U .
(b): This is Proposition 29 in [1]. ��

We will show that the compactness of X cannot be remove in (b) of the previous proposi-
tion. Indeed, take F : X → ℘0(R

2), F(λ) = {(x, y) ∈ R
2 : x2+y2 = λ2}, X = ]0, 1[, with

R
2 ordered by K = R

2+. Then, F is K-semicontinuous on X. However, {((−λ, 0) − K)c:
λ ∈ ]0, 1[} is a KF -cover that admits no finite KF -subcover.

From (a) of the previous proposition and Theorem 5.1 we obtain the following existence
theorem. Nevertheless, by (b) of the same proposition a stronger property is obtained for F
in [1,Proposition 29], see also [11,Theorem 5.3].

Theorem 6.4 Suppose that X is compact and F is upper K-semicontinuous on X. Then F
is order-semicompact with respect to �l , has the domination property and problem (SP ) has
an l-solution.

The next proposition shows the importance of our notion introduced in Definition 5.5.
Let {Aα : α ∈ I } be a net of subsets of Y . We denote Limsupα Aα the set of all cluster

points of {yα : yα ∈ Aα, α ∈ I }.
Proposition 6.5 Let x0 ∈ X. If F is l-type demi-lower semicontinuous in the sense of
Kuroiwa [14,Definition 3.2] at x0 then F is decreasingly lower bounded at x0.

Proof Suppose that {xα} ⊆ X converges to x0 such that {F(xα) : α ∈ I } is decreasing with
respect to �l . This implies

⋃

α∈I

F (xα) ⊆ Limsupα(F (xα) + K).

By assumption, F is l-type demi-lower semicontinuous at x0, that is,

F(x0) �l Limsupα(F (xα) + K).

Therefore, F(x0) �l F (xα) ∀ α ∈ I . ��
Thus, [14,Theorem 4.1] and by symmetry [14,Theorem4.3] follow from Theorem 5.8.

Moreover, [11,Theorem5.8] is a consequence of Proposition 6.5 and Theorem 5.8.
A more verifiable condition implying the l-type demi-lower semicontinuity of F is the

following: for any x ∈ X, F(x) + K is closed and

{x′ ∈ X : F(x′) �l F (x)} is closed.

In what follows, given any A ⊆ Y , we set

F−(A)
.= {x ∈ X : F(x) ∩ A = ∅}.

The following result is easy to check and appears in Remark 2.1 in Ferro [5].

Proposition 6.6 Assume that F is upper K-semicontinuous on X and K is closed. Then
F−(Ly) is closed for all y ∈ Y .
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When y ∈ Y , it is not difficult to show that

F−(Ly) = {x ∈ X : F(x) �l y}.
Therefore, from the above proposition we obtain that [11,Theorem5.9] is related to Theorem
6.4.

7 Application to set-valued optimization: the vector criterion case

In the sequel, X and E are two Hausdorff topological spaces and Y is equipped with any
partial order �. Consider the following set-valued optimization problem

(V P ) Min F(x) subject to x ∈ X

where F is a set-valued map from X to E such that F(x) = ∅ for each x ∈ X.
It is said that x0 ∈ X is a solution of problem (VP) if there exists y0 ∈ F(x0) such that

y0 ∈ Min(F (X), �) where F(X) = ⋃
x∈X F(x). Therefore, solving problem (VP) means

to find conditions under which Min F(X)
.= Min(F (X), �) = ∅.

Definition 7.1 [18] It is said that F is inf-compact if there exists y0 ∈ F(X) such that
F−(Ly) is compact for each y ∈ Ly0 .

The next existence theorem is obtained in [18,Corollary 2.2] under the stronger assump-
tion that F(x) is order-s-semicompact for all x ∈ X, since order-s-semicompactness of
F(x) implies order-s-semicompactness of F(x) ∩ Ly for each y ∈ F(X), and the con-

verse may be not true. Indeed, consider R
2 ordered by R

2+ and F : R −→ 2R
2

defined by
F(x) = {(t − x,−t) : t ∈ ]0, 1]} for each x ∈ R. One can check that none of the image sets
F(x) are order-s-semicompact. However for each y ∈ F(R) and x ∈ R the set F(x) ∩ Ly is
order-s-semicompact or empty.

Theorem 7.2 Suppose thatF(x)∩Ly is order-s-semicompact for eachx ∈ X andy ∈ F(X).
If F is inf-compact then Min F(X) = ∅.

Proof Let y0 ∈ F(X) such that F−(Ly) is compact for each y ∈ Ly0 . It is sufficient to check
that F(X)∩Ly0 is order-complete. Suppose that

⋃
α∈I Lc

dα
is a covering of F(X)∩Ly0 with

{dα : α ∈ I } being a decreasing net in F(X) ∩ Ly0 . For each α ∈ I , we consider the set

Uα
.= {x ∈ X : F(x) ⊆ Lc

dα
} = {x ∈ X : F(x) ∩ Ldα = ∅} = [F−(Ldα )]c.

Since dα ∈ F(X) ∩ Ly0 and F is inf-compact then Uα is open. Let us prove that

F−(Ly0) ⊆
⋃

α∈I

Udα . (6)

Indeed, if x ∈ F−(Ly0) then F(x) ∩ Ly0 = ∅. Since F(x) ∩ Ly0 ⊆ F(X) ∩ Ly0 we have

F(x) ∩ Ly0 ⊆
⋃

α∈I

Lc
dα

Therefore, by the order-s-semicompactness of F(x) ∩ Ly0 , there exists dα(x) ∈ {dα : α ∈ I }
such that

F(x) ∩ Ly0 ⊆ Lc
dα(x)
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because of {dα : α ∈ I } is a decreasing net and since dα(x) ∈ Ly0 we have

F(x) = (F (x) ∩ Ly0) ∪ (F (x) ∩ Lc
y0

) ⊆ Lc
dα(x)

∪ Lc
y0

⊆ Lc
dα(x)

.

Consequently, (6) holds. Thus, by the compactness of F−(Ly0) we obtain

F−(Ly0) ⊆ Udβ = [F−(Ldβ )]c
for some β ∈ I with dβ ∈ F(X) ∩ Ly0 , which contradicts the fact that F−(Lz) = ∅ for all
z ∈ F(X). ��

The following notion can be considered an extension of the cone-lower semicontinuity
for a set-valued map given by Ferro in [5] and is useful in order to write the inf-compactness
assumption on F in terms of more verifiable conditions.

Definition 7.3 It is said that F is order-lower semicontinuous on X if F−(Ly) is closed for
all y ∈ E.

Looking at the proof of the previous theorem, we immediately obtain the next corol-
lary. Notice that when X is compact and F is order-lower semicontinuous on X, F−(Ly) is
compact for all y ∈ E. Hence, F is inf-compact.

Corollary 7.4 Suppose that X is compact, F is order-lower semicontinuous and F(x)∩Ly

is order-s-semicompact for each x ∈ X and y ∈ F(X). Then F(X) has the domination
property.

By considering E a topological linear space ordered by a closed convex pointed cone
K , Theorem 7.2 and Corollary 7.4 are related to Theorem 3.1(i) and (ii) in [6] respectively
where the order-s-semicompantness of F(x) ∩ Ly is replaced by the order-completeness of
F(x) + K .

In the remaining of this section we assume that E is a topological vector space ordered
by a convex cone K . Under these assumptions, it is easy to check that SLc

y
= Lc

y and
S(cl Ly)c = (cl Ly)

c for any y ∈ E.

Theorem 7.5 Let X be compact. Assume that F is upper K-semicontinuous on X, and F(x)

is τ -order-s-semicompact for each x ∈ X. The following assertions hold:

(a) F (X) is τ -order-s-semicompact;
(b) if, in addition, condition (1) is satisfied, then Min F(X) = ∅.

Proof As usual we only prove (a). Suppose that
⋃

d∈D(cl Ld)c is a covering of F(X) with
D ⊆ E. Then for each x ∈ X there exists a finite set J (x) in D such that

F(x) ⊆
⋃

d∈J (x)

(cl Ld)c

since F(x) is τ -order-s-semicompact. Obviously, the set V (x) = ⋃
d∈J (x)(cl Ld)c is open.

For each x ∈ X we consider the set

U(x) = {x′ ∈ X : F(x′) ⊆ SV (x)},
which is open because of the upper K-semicontinuity of F on X. Thus, {U(x) : x ∈ X} is
an open covering of X. Since X is compact, we obtain

X ⊆ U(x1) ∪ · · · ∪ U(xs)

where {x1, . . . , xs} ⊆ X. Consequently, F(X) ⊆ V (x1) ∪ · · · ∪ V (xs). So, F(X) is τ -order-
s-semicompact. Part (b) follows from Theorem 3.2. ��
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Corollary 7.6 Let X be compact. Assume that K is closed, F is upper K-semicontinuous
on X and F(x) is order-s-semicompact for each x ∈ X. The following assertions hold:

(a) F (X) is order-s-semicompact;
(b) F (X) has the domination property;
(c) Min F(X) = ∅.

We cannot expect that “F(X) is τ -order-semicompact” holds if “F(x) is
τ -order-semicompact for each x ∈ X” in Theorem 7.5, as the example in Remark 2.3 of
[5] shows (an example when �=�K for some pointed, closed, convex, cone K with non-
empty interior, is given). Hence, Lemma 3.1 in [4] is false, and therefore Theorem 3.1 in the
same paper remains open. For the same reason, as was pointed out by Ferro, Theorem 5.4
in [16,Chapter 2] should be rewritten. Indeed, Theorem 7.5 and Corollary 7.6 are alternative
correct versions of that theorem.

Notice that in Theorem 2.2 in [5] it was imposed the weaker assumption of
order-semicompactness for F(x) + K instead of the order-s-semicompactness for F(x)

in the previous corollary, but we proved the stronger property of order-s-semicompactness
for F(X) in contrast to that in Theorem 2.2 in [5].

Acknowledgements The authors are grateful to the anonymous referees for their helpful comments and
suggestions.
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